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a b s t r a c t

Two problems of the interaction of a hollow circular cylinder with load-free ends and an unbounded
plate with a cylindrical cavity and a symmetrically imbedded rigid insert are considered. Homogeneous
solutions are found and the generalized orthogonality of these solutions is used when the modified
boundary conditions are satisfied. As a result, we have a system of two integral equations in functions
of the displacements of the outer and inner surfaces of the hollow cylinder. These functions are sought
in the form of sums of a trigonometric series and a power function with a root singularity. The ill-
posed infinite systems of linear algebraic equations obtained are regularized by the introduction of small
positive parameters. Since the elements of the matrices of the systems as well as the contact stresses
are defined by poorly converging numerical and functional series, an efficient method for calculating of
the remainders of the above-mentioned series is developed. Formulae are found for the contact pressure
distribution function and the integral characteristic. Examples of the calculation of the interaction of the
cylinder and the plate with an insert are given.

The method of solving contact problems described here has been used earlier1,2 and the generalized
orthogonality of the solutions found for bodies of finite dimensions, that is, for a rectangle and cylinders
of finite length, is its basis. Problems for hollow cylinders with a band 2 and an insert reduce to a system
of two integral equations, and the problem for a rectangle1 reduces to one integral equation. Solving
these integral equations, ill-posed systems of linear algebraic equations are obtained which are subject
to regularization3.

© 2010 Elsevier Ltd. All rights reserved.

1. Formulation of the problem and homogeneous solutions

The axisymmetric problem of the interaction of a hollow elastic cylinder of radii R0, R1(0 < R0 < R1) and length (|z| ≤ 1) with a symmetri-
cally imbedded rigid insert of a length 2a and lateral surface r = R0 + ı(z), where �(z) is an even function of z (Fig. 1), is considered. We shall
assume that there are no friction forces

in the region of contact between the insert and the cylinder and that the ends of the cylinder and its outer surface r = R1 are unloaded.
The boundary conditions can then be written in the form

(1.1)

(1.2)

(1.3)
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Fig. 1.

We will use of the general representation of the solution of an axisymmetric problem in terms of a biharmonic Love functions˚(r, z)4

(1.4)

where G is the shear modulus and v is Poisson’s ratio.
For a hollow cylinder, we will seek the Love function in the form˚= f(0)(r) (z). Here,

H(1)
s (�r) and H(2)

s (�r) are Hankel functions 5 and c1, c2, � are constants. From relations (1.4), we find

(1.5)

Whence, satisfying boundary conditions (1.1), we obtain

(1.6)

Taking account of relations (1.5) and (1.6), we find the eigenfunction �n(z) and the stress-strain state corresponding to the non-zero
eigenvalue �n(n = 1, 2, . . . ):

(1.7)
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The following equations correspond to the eigenvalue �0 = 0:

(1.8)

From relations (1.7) and (1.8) when r = Rs(s = 0, 1), we find

(1.9)

(1.10)

Henceforth a prime on a summation sign denotes a truncated form:

In the case of an unbounded plate with a cylindrical cavity when R0 = R, R1 = ∞ → (R ≤ r < ∞ ), the Love function is sought in the form
˚= K0(tr) (z)(t = const) and the relations of the form of (1.5) - (1.9) have the form

(1.11)

Here, K0(tnR), K1(tnR) are McDonald functions and f0 and fn are constants.
The eigenfunctions for �n(z) and �ni(z) for the cylinder and the plate, defined by formulae (1.7) and 91.11), satisfy the conditions of

generalized orthogonality 2

(1.12)

(1.13)

2. Method of solution

We introduce the notation

(2.1)
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Here u(z) and g(z) are the sought function which are even in z. The second boundary condition of (1.2), supplemented by the first relation
of (2.1), can then be written in the form

(2.2)

Since the functional series (1.10), which determine the left-hand sides of the first condition of (1.2) and conditions (1.3) and (2.2) diverge
(an a posteriori analysis of the solution is evidence of this), the above mentioned boundary conditions are replaced by the following boundary
conditions

(2.3)

(2.4)

(2.5)

Here,

Equations (2.3) and (2.4) are equivalent to the system of relations

(2.6)

Here,

(2.7)

We next determine the constants fn,s using the generalized orthogonality condition (1.12). Multiplying the first equation of (2.6) by
ˇmsh�mz and the second by F ′

m(z) and then adding and integrating with respect to z, we find

(2.8)

Replacing the coefficients f0,s, f1,s, f2,s, . . . in relation (2.5) by integrals (2.7) and (2.8) and taking account of equality (2.1), we give
condition (2.5) the form

(2.9)

when s = 0, a ≤ z ≤ 1 and, when s = 1, 0 ≤ z ≤ 1where
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Suppose the specified function ı(�) and the required functions g(�) and u(�) are defined by the series

(2.10)

(2.11)

From condition ı(a) = g(a), we find

(2.12)

Substituting expressions (2.10) - (2.12) into Eq. (2.9) and equating the coefficients of ık(k = 0, 1, . . . ) to zero, we obtain the system of
functional equations

(2.13)

when s = 0, a ≤ z ≤ 1 and, when s = 1, 0 ≤ z ≤ 1
where

(2.14)

Formulae are available for evaluating the integrals J(q)n , Jrn, Jrn,˜Ikn 1,2

It can easily be shown (see Section 3) that the functional series (2.14) converge uniformly in the interval [0,1] and, consequently, they
can be integrated term by term. Multiplying Eq. (2.13) by coslm(z − a) when s = 0 and, by cosbmz(m = 0, 1, . . . ) when s = 1 and integrating over
the intervals [a, 1] and [0,1] respectively, we obtain two infinite systems of algebraic equations in the unknowns X(k)

h
,˜X(k)
h

(h = 0,1, . . .).

(2.15)

Taking the integrals (see Ref. 2)
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into account, we obtain expressions for the elements of the matrices A,B,˜A,˜B and the vectors b(k),˜b(k)

(2.16)

The integral equations (2.9) are the consequence of an ill-posed problem because both systems are ill-posed and have to be regularized
by introducing the small positive parameters � and ˜̨

3. The regularized systems have the form

(2.17)

From here, we determine the regularized solutions Y (k),˜Y (k) and the functions

(2.18)

(2.19)

Then, using formulae (2.9), we find the functions �(Rs, z) (s = 0, 1), in terms of which the stresses 461 g �r(RS, z) =� ′′′(RS, z) are expressed.
We have

(2.20)

The details of the calculation of the quantity Asn,s and the hyperbolic functions were presented earlier.2

In the case of a plate with a cylindrical cavity (R0 = R, R1 = ∞ ), the boundary condition (2.9) when s = 0, the functional equation (2.13)
when s = 0 and the systems of algebraic equations (2.15) and (2.17) have the form

(2.21)

(2.22)

(2.23)
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where

Note that, if Im �n > 0 and Im tn < 0, the relations

hold.

3. Summation of the series

Since the elements of the matrices A, B, .... of Eqs. (2.15) as well as the functions f s
h
(z),˜f sr (z), . . . , describing the contact stresses are

determined by poorly converging numerical and functional series, an effective method was developed for calculating the remainders of
the above mentioned series, based on the use of the asymptotic summation formulae

(3.1)

Here,

Expressions for J(s, �) and J(s, 0) were presented earlier.1,2

As an example, we will now consider a technique for calculating the values of the function K(�)

Here Rp(�) is the remainder of the functional series which begins from the (p + 1)-th term; |�| ≤ 1, p = 4000.
The sum of the first p terms of the series is calculated directly and the remainder Rp(�) is found using the first formula of (3.1) if |�| < 1

and the second formula when � = 1. To do this, the expressions Gn(�) and Gn(1) are expanded in series in powers of a small parameter �n.
It is easy to obtain these expansions using the representation

Taking account of this formula, we find

(3.2)
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Then, applying formula (3.1) to each term of expansions (3.2), we finally obtain

(3.3)

Note that the quantity Re{J(s, 0)} also exists when s = 1.
The results of the calculations using formulae (3.1) and (3.3) are given below.

From this, taking account of the error in the calculation, we conclude that K(�) = 0|�| < 1, K(1) = 1/2. The characteristics of the function
K(�) which have been noted enable us to simplify the expressions for the functions ˜Fn(z), ˜Hn(z) of condition (2.5).

The values of the numerical and functional series in formulae (2.16) and (2.14) are calculated using the same scheme. It is best to use
the expansions for the integrals J(h)

n , the quantities Asn,s and the functions F ′′
n(�),˜Fn(z), ˜Hn(z) which have already been found 1,2 in order to

obtain expansions in powers of �n of the n-th terms of these series. It is then necessary to apply the first formula of (3.1) to the terms of
the expansion Akzn(�k)�skn (0< �k < 2, sk > 0) and the second formula to the terms Bk�skn (sk > 1).

Among the drawbacks of the method for summing the series described here, we must include the unwieldiness of the expansions
used in them and the low accuracy of formula (3.1) when the values of � are close to 0 and 2 (compare K(0.9) = − 1.58 · 10−11 and
K(0.99) = − 1.55 · 10−9).

The necessary control on the accuracy in calculating the remainder Rp = ap+1 + ap+2 + . . . is achieved using the quantity εp = |r − R| (for an
ideal calculation �p = 0), where

Thus, in checking the remainders R(h)
p (z), Rhp(m) occurring in the formulae

when h = m = 0, z = 0.5, the following values are obtained:

The kernels Kh, s(�, z)(h, s = 0, 1), K(�, z) of the integral equations (2.9) and (2.21) are determined by functional series. Summing and
then investigating the remainders of these series, it can be successfully established that all the kernels are continuous and bounded in
the domain D̄{�, z ∈ [0,1]}, and, at the same time, that the kernels Kh,h(�, z) and K(�, z) have a singularity of the (�− z)ln|�− z| type in the
D *{|�− z| → 0} region. The logarithmic singularity is found taking account of the asymptotic form when |�− z| → 0 of the special function
˚(z, s, 	) 7 in terms of which the remainders investigated are expressed.

4. Determination of the contact pressure

We will now present examples of the calculation of a hollow cylinder with an insert (ı(z) ≡ ı0, k = 0 ; a = R0 = R = 1/4) for the following
versions: 1) R1 = 1/2, 2) R1 = 3.4, 3) R1 = 1, 4) R1 = ∞ (a plate with a cavity). The infinite systems (2.17) in the unknowns Y (0)

s ,˜Y
(0)
s (s = 0,1, . . .)

(we will henceforth omit the zero superscript on the quantities Y (0)
s , u

(0)(z), . . .) were shortened and solved for several values of � and ˜̨. Its
own pair (˛, ˜̨) of smallest values of the regularization parameters for which no noticeable amplitudes of the oscillations of the regularized
solutions Ys,˜Ys(s = 0, . . . ,80) were yet observed and the discrepancy was fairly small

was chosen for each version (the values of the pairs were: (8 · 10−19, 2 · 10−19), (4 · 10−19, 2 · 10−19) for versions 1, 2, 3 and 4 respectively).
The search for the optimal pair (˛, ˜̨) is helped considerably by the fact that the appearance of noticeable amplitudes of the the

oscillations of the solutions ˜Ys and ˜Ys is determined by one parameter: � or ˜̨ respectively.
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Table 1

s Ys105 Ys105

Versions

1 2 3 4 1 2 3

0 −215767 −240330 −265767 −284565 23130 17181 13405
1 54035 104363 203983 219228 366870 237813 146127
2 42460 −9622 −68 847 −59 923 459 289 74164 −22 262
3 120 979 207 987 134 092 167 774 50446 94 628 67 455
75 17 −1016 −197 −302 14805 49890 40 507
76 −63 755 5 40 −14672 −48 873 −39525
77 28 −925 −188 −290 13631 46048 37418
78 −55 693 7 19 −13764 −45698 −36915
79 14 −865 −182 −282 12620 42779 34802
80 −41 645 −24 −8 −13689 −45102 −36337

Fig. 2.

The values of the constants Ys × 105 and ˜Ys× 105(s = 0, . . . ,3; s = 75, . . .80) are given in Table 1.
Graphs of the functions g0(z) and u(0)(z) ≡ u(z), obtained using formulae (2.18) and (2.19), are shown in Fig. 2. The number on a curve

corresponds to the version number.
In order to find the contact pressure q(z) = −�r(R0, z)(|z| ≤ a), we turn to relations (2.20) when k = 0
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Table 2

k 	(tk)

Versions

1 2 3 4

0 3.186 4.965 5.620 6.213
1 3.242 5.005 5.654 6.246
2 3.424 5.134 5.766 6.356

3.780 5.394 6.002 6.590
4 4.441 5.913 6.497 7.093
5 5.939 7.255 7.848 8.501

Table 3

Quantity Versions

1 2 3 4 5


1 2.526 3.335 3.660 3.994 3.860

2 0.797 1.241 1.405 1.553 1.480

3 0.766 0.852 0.913 0.979 0.937
u(0) 0.7013 0.4379 0.2813 – –
u(1) −0.0447 −0.0852 −0.0461 – –
g0(1) −0.0531 −0.1011 −0.0597 −0.0105 –

In the case of a plate with a cavity, we have

It follows from this that the dimensionless contact pressure distribution function ϕ̃(z) and the integral characteristic N0 are defiined by
the expressions

(4.1)

and, in the case of a plate with a cavity, by

(4.2)

Taking account of the equality

we find the formulae for the integral characteristics of the hollow cylinder and the plate

The third derivative ω̃
′′′

(R0, z) at the central mesh point z = z0 is found numerically 3,6

Here, ωk =ω(R0, zk), zk = z0 + kh, k = − 3, . . ., 3 ; 0005 ≤ h ≤ 0.001.
The values of the function ϕ(t) ≡ ϕ̃(at) (t = z/a) when t = tk = k/6 are presented in Table 2, and the values of the quantities (v = 0.3)
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and the functions u(z), g0(z) when z = 0 and z = 1 are presented in Table 3. Comparing the values of �r(r = 1, 2, 3) for hollow cylinders of
finite dimensions and an unbounded plate with a cylindrical cavity with the corresponding values of 
r for a space with a cylindrical cavity
(Version 5, see Ref. 4, p. 97), we see that they differ by less than 4.9% (Version 4), 5.2% (Version 3), 16% (Version 2) and 46% (Version 1).

Graphs of the function 	(t), obtained using formula (4.1), are shown in the right upper part of Fig. 2. In order to explain these graphs,
we separate out the root singularity of the function �r(R0, z), for example (Version 3), in the left half-neighbourhood of the point z = a:

Here, L4(z) = a0 + a1x + a2x2 + a3x3 + a4x4 is a generalized interpolation polynomial for the function y(z) = xϕ̃(z)(x ≡ √
a− z) which is given

at the interpolation points

Calculating the values of yk = y(zk) when h = 0.0005(k = 0) and h = 0.0006(k = 1, . . .4)

and then the coefficients ak(k = 0, . . ., 4), we find

Similar calculations carried out for a plate with a cavity give

Note the good agreement of the quantities a0/
√

2 = 0.910, b0/
√

2 = 0.975�3 = 0.913, �3 = 0.979 (see Table 3, versions 3 and 4).
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